
Radial-Basis Function Networks
• A function is radial basis (RBF) if its output depends on (is a non-

increasing function of) the distance of the input from a given stored  
vector.vector. 

• RBFs represent local receptors, as illustrated below, where each green 
point is a stored vector used in one RBF.

• In a RBF network one hidden layer uses neurons with RBF activation• In a RBF network one hidden layer uses neurons with RBF activation 
functions describing local receptors. Then one output node is used to 
combine linearly the outputs of the hidden neurons.

w3

w2
The output of the red vector
is “interpolated” using the three

t h h t

w1

green vectors, where each vector 
gives a contribution that depends on
its weight and on its distance from 
the red point. In the picture we have

231 231 www <<



RBF ARCHITECTURE
x1

w1
1ϕ

x2 y

w 1

xm

wm1
1mϕ

• One hidden layer with RBF activation functions 
11 ... mϕϕ

• Output layer with linear activation function.
||)(||...||)(|| 111111 mmm txwtxwy −++−= ϕϕ

txxxtx m vector from),...,(ofdistance |||| 1=−



HIDDEN NEURON MODEL

• Hidden units: use radial basis functions   
φσ( || x - t||) the output depends on the distance of 

the input x from the center t

x1

x2

φσ( || x - t||)

t is called centerσϕ t is called center
σ is called spread
center and spread are parameters

xm



Hidden Neurons

• A hidden neuron is more sensitive to data points p
near its center. 

• For Gaussian RBF this sensitivity may be tuned 
by adjusting the spread σ, where a larger spread 
implies less sensitivity.

• Biological example: cochlear stereocilia cells (in 
our ears ...) have locally tuned frequency 
responses.



Gaussian RBF φ

φ :

center

σ is a measure of how spread the curve is:

Large σ Small σ



Types of φ

M ltiq adrics:• Multiquadrics:

2
1)()( 22 crr +=ϕ 0c >

• Inverse multiquadrics:

)()(ϕ

1
|||| txr −=

2
1)(

1)( 22 cr
r

+
=ϕ 0>c

• Gaussian functions (most used):

⎟⎟
⎞

⎜⎜
⎛
−=

2

exp)(ϕ rr 0>⎟⎟
⎠

⎜⎜
⎝

= 22
exp)(

σ
ϕ r 0>σ



Example: the XOR problem 

• Input space: (1,1)(0,1)
x2

(0,0) (1,0)
x1

• Output space: y10
p p

• Construct an RBF pattern classifier such that:
(0,0) and (1,1) are mapped to 0, class C1
(1,0) and (0,1) are mapped to 1, class C2



Example: the XOR problem 
• In the feature (hidden layer) space:

p p

2
1||||||)(|| txetx −−=ϕ

2
2

1

||||
22

||||
11

||)(||

||)(||
txetx

etx
−−=−

=−

ϕ

ϕ
)0,0( and )1,1( with 21 == tt

φ2

1.0
(0,0)

Decision boundary

φ1
1.00.5

0.5 (1,1)

• When mapped into the feature space < ϕ1 , ϕ2 > (hidden layer), C1 and C2
become linearly separable. So a linear classifier with ϕ1(x) and ϕ2(x) as 

φ1(0,1) and (1,0)

y p ϕ1( ) ϕ2( )
inputs can be used to solve the XOR problem.



RBF NN for the XOR problem p
2

1||||
11 ||)(|| txetx −−=−ϕ )0,0( and )1,1( with 21 == tt

2
2 ||||

22

11

||)(|| txetx −−=−ϕ

x1 t1 -1

x2

+1
-1t2

y

0classotherwise1classthen0If
1

2
2

2
1 ||||||||

>
+−−= −−−−

y
eey txtx

0classotherwise1classthen0 If >y



RBF network parameters

• What do we have to learn for a RBF NN with a 
given architecture?
– The centers of the RBF activation functions
– the spreads of the Gaussian RBF activation functions
– the weights from the hidden to the output layer

• Different learning algorithms may be used for 
learning the RBF network parameters. We 
describe three possible methods for learningdescribe three possible methods for learning 
centers, spreads and weights.



Learning Algorithm 1
• Centers: are selected at random

– centers are chosen randomly from the training setcenters are chosen randomly from the training set

• Spreads: are chosen by normalization:
maxdcenters 2any betweendistanceMaximum

• Then the activation function of hidden neuron
1m

max
centers ofnumber 

y
==σ

i• Then the activation function of hidden neuron 
becomes:

i

( ) ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−−=− 2

i2
max

12
i tx

d
mexptxiϕ

⎠⎝ max



Learning Algorithm 1

• Weights: are computed by means of the pseudo-
inverse methodinverse method.
– For an example             consider the output of the 

network
),( ii dx

||)(||...||)(||)( 111111 mimmii txwtxwxy −++−= ϕϕ

– We would like                  for each example, that is ii dxy =)(

dtt ||)(||||)(|| imimmi dtxwtxw =−++− ||)(||...||)(|| 111111 ϕϕ



Learning Algorithm 1

• This can be re-written in matrix form for one example

d

[ ] i
T

mmimi dwwtxtx =−− ]...[||)(|| ... ||)(|| 111111 ϕϕ

and 

mm txtx ||)(||||)...(|| 111111
⎥
⎤

⎢
⎡ −− ϕϕ

T
N

T
m

mNmN

ddww
txtx

]...[]...[
||)(||||)...(||

... 111

1111

=
⎥
⎥
⎥

⎦⎢
⎢
⎢

⎣ −− ϕϕ

for all the examples at the same time

mNmN ||)(||||)(|| 1111 ⎦⎣ ϕϕ



Learning Algorithm 1

let 
⎥
⎥
⎤

⎢
⎢
⎡ −−

=Φ ...
||)(||...||)(|| 11111 mNm txtx ϕϕ

⎥
⎥
⎦⎢

⎢
⎣ −−

Φ
||)(||...||)(||

...

1111 mNmN txtx ϕϕ

⎤⎡⎤⎡ dwthen we can write

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
Φ

d

dw
......

11

If            is the pseudo-inverse of the matrix       we +Φ

⎥⎦⎢⎣⎥⎦⎢⎣ Nm dw 1

Φ
obtain the weights using the following formula

TT ddww ][][ +Φ= Nm ddww ]...[]...[ 111 Φ=



Learning Algorithm 1: summary

1. Choose the centers randomly from the
i itraining set.

2 C t th d f th RBF f ti2. Compute the spread for the RBF function
using the normalization method.

3. Find the weights using the pseudo-inverse
methodmethod.



Learning Algorithm 2: Centers
• clustering algorithm for finding the centers

1 Initialization: tk(0) random k = 1, …, m11 Initialization: tk(0) random k  1, …, m1

2 Sampling: draw x from input space 
3 Similarity matching: find index of center closer to x

4 U d ti dj t t

)n(tx(n)min argk(x) kk −=

4 Updating: adjust centers

[ ] k(x)k if        )n(tx(n))n(t kk =−+η
=+ )1n(t

5 Continuation: increment n by 1, goto 2 and continue until no 

otherwise                        )n(tk

=+ )1  n(tk

y , g
noticeable changes of centers occur



Learning Algorithm 2: summary

• Hybrid Learning Process:y g
• Clustering for finding the centers.
• Spreads chosen by normalization. 
• LMS algorithm (see Adaline) for finding the 

weights.



Learning Algorithm 3
• Apply the gradient descent method for finding centers, 

spread and weights, by minimizing the (instantaneous) 
1squared error

• Update for:

2))((
2
1 dxyE −=

centers
j

tj  t
t

j ∂
∂

−=Δ
Eη

spread

j

j σ
ησ σ ∂

∂
−=Δ

E
j

weights
jσ∂

ijij w
w

∂
∂

−=Δ
Eη

ijw∂



Comparison with FF NN 
k d f i d f f iRBF-Networks are used for regression and for performing 

complex (non-linear) pattern classification tasks.

Comparison between RBF networks and FFNN:
• Both are examples of non-linear layered feed-forward networks.

• Both are universal approximators.



Comparison with multilayer NN

• Architecture:
RBF t k h i l hidd l– RBF networks have one single hidden layer.

– FFNN networks may have more hidden layers.

• Neuron Model:
– In RBF the neuron model of the hidden neurons is different from the one of 

the output nodes.p
– Typically in FFNN hidden and output  neurons share a common neuron 

model.
– The hidden layer of RBF is non-linear, the output layer of RBF is linear.The hidden layer of RBF is non linear, the output layer of RBF is linear. 

– Hidden and output layers of FFNN are usually non-linear.



Comparison with multilayer NN

• Activation functions:
– The argument of activation function of each hidden neuron in a 

RBF NN computes the Euclidean distance between input vector 
and the center of that unit.

– The argument of the activation function of  each hidden neuron in 
a FFNN computes the inner product of input vector and the 
synaptic weight vector of that neuron.

• Approximation:
– RBF NN using Gaussian functions construct local approximations 

to non-linear I/O mappingto non linear I/O mapping.
– FF NN construct global approximations to non-linear I/O mapping.



Application: FACE RECOGNITION 

• The problem:The problem:
– Face recognition of persons of a known group in an 

indoor environment.

• The approach:
– Learn face classes over a wide range of poses using an 

RBF network.



Dataset
• database

– 100 images of 10 people (8-bit grayscale, resolution 384 x 
287)

– for each individual, 10 images of head in different pose 
from face-on to profilefrom face-on to profile

– Designed to asses performance of face recognition 
techniques when pose variations occur



Datasets 

All ten images for 
classes 0-3 from 
the Sussex 
database, nose-
centred andcentred and 
subsampled to 
25x25 before 
preprocessingpreprocessing



Approach: Face unit RBF

• A face recognition unit RBF neural networks is trained 
to recognize a single person.

• Training uses examples of images of the person to be 
recognized as positive evidence, together with selected 
confusable images of other people as negative evidenceconfusable images of other people as negative evidence.



Network Architecture

• Input layer contains 25*25 inputs which represent the 
pixel intensities (normalized) of an image.p ( ) g

• Hidden layer contains p+a neurons:
– p hidden pro neurons (receptors for positive evidence)

– a hidden anti neurons (receptors for negative evidence)

O l i• Output layer contains two neurons:
– One for the particular person.

O f ll th th– One for all the others.
The output is discarded if the absolute difference of the two output 

neurons is smaller than a parameter R.p



RBF Architecture for one face recognitionRBF Architecture for one face recognition 

Output units
Linear

i d

RBF units

Supervised

Non-linear

Unsupervised

Input units

Unsupervised



Hidden Layer 
• Hidden nodes can be:

– Pro neurons: Evidence for that person.
– Anti neurons: Negative evidence.

• The number of pro neurons is equal to the positive examples of 
th t i i t F h th i ith tthe training set.  For each pro neuron there is either one or two 
anti neurons. 

• Hidden neuron model: Gaussian RBF function.



Training and Testing 
• Centers:

– of a pro neuron: the corresponding positive example
– of an anti neuron: the negative example which is most similar to theof an anti neuron: the negative example which is most similar to the 

corresponding pro neuron, with respect to the Euclidean distance.

• Spread: average distance of the center from all other centers. So 
th d f hidd ithe spread        of a hidden neuron n is 

∑ −= hn
n tt

H
||||

2
1σ

nσ

where H is the number of hidden neurons and           is the center of neuron    .

• Weights: determined using the pseudo inverse method

∑
h

n H 2
it

i• Weights: determined using the pseudo-inverse method.
• A RBF network with 6 pro neurons, 12 anti neurons, and R equal to 0.3, 

discarded 23 pro cent of the images of the test set and classified correctly 96 
pro cent of the non discarded imagespro cent of the non discarded images. 


